Lesson plan

Name if the faculty	:	Mr. Manoj Bansal
Discipline	:	Electrical & Electronics Engineering
Semester	:	3 rd
Subject	:	Electrical Machine- I (Paper Code: PCC-EE-209-G)
Lesson Plan Duration	:	15 weeks (From August, 2020 to November 2020)

Work Load (Lecture/ Practical) per week (in hours): Lecture-02, Practical-01

Week	Theory		Practical		
	Lecture day	Topic(Including assignment/test)	Practical Day	Торіс	
1 st	1 st	Review of magnetic circuits - MMF	1 st	To study conversion of 3 Phase to six phase using 3 single phase transformers	
	2^{nd}	Flux, reluctance & inductance			
	1 st	Review of Ampere Law and Biot Savart,s Law		To study three phase rectifiers & supply configuration. In 3 phase	
2 nd	2 nd	Visualization of magnetic fields produced by a bar magnet and a current carrying coil through air and through a combination of iron and air	2 nd		
3 rd	1 st	Influence of highly permeable materials on the magnetic flux lines	3 rd	To perform Sumpner's Back to back test on 1- phase transformers	
	2^{nd}	B-H curve of magnetic materials			
4 th	1 st	Flux-linkage vs current characteristic of magnetic circuits	4 th	To study Parallel operation of two 1-phase transformers	
4 ^m	2 nd	Linear and nonlinear magnetic circuits; energy stored in the magnetic circuit	4		
5 th	1 st	Force as a partial derivative of stored energy with respect to position of a moving element	5 th	To perform load test on DC shunt generator	
	2 nd	Torque as a partial derivative of			

		stored energy with respect to angular position of a rotating element.					
6 th	1 st	Examples - galvanometer coil, relay contact, lifting magnet, rotating element with eccentricity or saliency		To study Speed control of DC shunt motor			
	2 nd	Basic construction of a DC machine, magnetic structure - stator yoke, stator poles, pole- faces or shoes, air gap and armature core					
7 th	Sessional -I Examination+Activity						
8 th	1 st	Visualization of magnetic field produced by the field winding excitation with armature winding open	7 th	To study Swinburne's test of DC shunt motor			
	2 nd	Air gap flux density distribution, flux per pole, induced EMF in an armature coil					
9 th	1 st	Armature winding and commutation - Elementary armature coil and commutator, lap and wave windings	8 th	To study Hopkinson's test of DC shunt M/Cs			
	2 nd	Construction of commutator, linear commutation Derivation of back EMF equation					
10 th	1 st	Armature MMF wave, derivation of torque equation, armature reaction, air gap flux density distribution with armature reaction.	9th	To syudy Ward Leonard method of speed control.			
	2 nd	Armature circuit equation for motoring and generation					

11th	1 st	Types of field excitations - separately excited, shunt and series. Open circuit characteristic of separately excited DC generator, back EMF with armature reaction	10 th	Three-phase transformer - construction, types of connection and their comparative features	
12 th	1 st	Voltage build-up in a shunt generator, critical field resistance and critical speed.V-I characteristicsTorque-speed characteristics of separately excited, shunt and series motors	11 th	Parallel operation of single-phase and three- phase transformers, Autotransformers - construction, principle, applications and comparison with two winding transformer	
13 th	1 st	Speed control through armature voltage. LossesLoad testing and back-to-back testing of DC machines	12 th	Magnetizing current, effect of nonlinear B-H curve of magnetic core material	
14 th	2 nd	Principle, construction and operation of single-phase transformersEquivalent circuit, phasor diagram, voltage regulation, losses and efficiency	13 th	Harmonics in magnetization current, Phase conversion - Scott connection, three-phase to six-phase conversion	
15 th	1 st	Testing - open circuit and short circuit tests, polarity test, back-to- back testSeparation of hysteresis and eddy current losses	14 th	Tap-changing transformers - No-load and on-load tap- changing of transformers, Three-winding transformers. Cooling of transformers.	
16^{th}	Sessional -II Examination+Activity				

Faculty Signature